inferential statistics

(redirected from Statistical inference)
Also found in: Dictionary, Financial, Encyclopedia, Wikipedia.
Related to Statistical inference: Statistical hypothesis

in·fer·en·tial sta·tis·tics

statistics from which an inference is made about the nature of a population; the purpose is to generalize about the population, based on data from the sample selected from the population.

inferential statistics

see inferential statistics.
References in periodicals archive ?
In the beginning, a brief review of the main contributors to statistical inference, first developed by Sir Ronald Fisher (1890-1962) and after improved in 1933 by Jerzy Neyman and Egon Pearson (2) (to be not confounded with the developer of the well-known Pearson product-moment correlation coefficient, Karl Pearson, who actually was Egon's father), introduces the readers from a historical point of view to what is the principal approach used in rehabilitation research, namely the Neyman-Pearson approach.
However, even if we say it correctly, statistical inference does not allow us to say very much of value for researchers today.
This was beyond our scope but important to understand for reliable statistical inference.
Chapter 9-12 discuss statistical inference, hypothesis testing and ANOVA.
It should be required reading for all statisticians, mathematicians and scientists as it shows how religious beliefs control statistical inference.
However, despite the numerous books and papers published on the basics of statistical inference and, thus, on the p-value, there still seems to be a need to highlight what message the p-value exactly contains (and what it does not).
For example, statistical fundamentals (such as the normal distribution and probability) are presented within the context of sampling theory early on in the text, which lays the groundwork for the later chapter on quantitative data analysis, which discusses issues of central tendency, dispersion, and statistical inference.
The introductory chapter provides the needed background on the characteristics and types of spatial data, and the nature of spatial processes and patterns such as autocorrelation functions and the effects of autocorrelation on statistical inference.
Scientists and researchers can now perform mass-spectrometry data analysis, perform statistical inference and prediction, view graphs, and conduct enhanced genomic and proteomic sequence analysis.
Articles in the issue include 1) "Distribution of Clinical Covariates at Detection of Cancer: Stochastic Modeling and Statistical Inference," 2) "Planning Public Health Programs and Scheduling: Breast Cancer," 3) "Planning of Randomized Trials," 4) "The Use of Modeling to Understand the Impact of Screening on U.
Statistical inference seeks to characterize how sampling variability affects the conclusions that can be drawn from samples of limited size.
The American Statistical Association, 1999; Wilkinson & the Task Force on Statistical Inference, 1999) currently prevail, coupled with the fact that our knowledge base in the areas of quantitative-based methodology has rapidly expanded in recent years, there is more necessity for students, particularly at the doctoral level, to take more research methods and statistics courses.

Full browser ?