Also found in: Dictionary, Acronyms, Encyclopedia.
Related to G6PD: G6PD deficiency

Glucose-6-Phosphate Dehydrogenase

Synonym/acronym: G6PD.

Common use

To identify an enzyme deficiency that can result in hemolytic anemia.


Whole blood (1 mL) collected in a lavender-top (EDTA) tube.

Normal findings

(Method: Fluorescent) Qualitative assay—enzyme activity detected; quantitative assay—the following table reflects enzyme activity in units per gram of hemoglobin:
AgeConventional UnitsSI Units (Conventional Units × 0.0645)
Newborn7.8–14.4 international units/g hemoglobin0.5–0.93 micro units/mol hemoglobin
Adult–older adult5.5–9.3 international units/g hemoglobin0.35–0.60 micro units/mol hemoglobin


Glucose-6-phosphate dehydrogenase (G6PD) is a red blood cell (RBC) enzyme. It is involved in the hexose monophosphate shunt, and its function is to protect hemoglobin from oxidation. G6PD deficiency is an inherited X-linked abnormality; approximately 20% of female carriers are heterozygous. This deficiency results in hemolysis of varying degrees and acuity depending on the severity of the abnormality. There are three G6PD variants of high frequency in different ethnic groups. G6PD A–is more common in African Americans (10% of males) than in other populations. G6PD Mediterranean is especially common in Iraqis, Kurds, Sephardic Jews, and Lebanese and less common in Greeks, Italians, Turks, North Africans, Spaniards, Portuguese, and Ashkenazi Jews. G6PD Mahidol is common in Southeast Asians (22% of males). Polymerase chain reaction (PCR) methods that can detect gene mutations for the enzyme in whole blood are also available. Counseling and written, informed consent are recommended and sometimes required before genetic testing.

This procedure is contraindicated for



  • Assist in identifying the cause of hemolytic anemia resulting from drug sensitivity, metabolic disorder, or infection
  • Assist in identifying the cause of hemolytic anemia resulting from enzyme deficiency

Potential diagnosis

Increased in

  • The pathophysiology is not well understood but release of the enzymes from hemolyzed cells increases blood levels.

  • Chronic blood loss (related to reticulocytosis; replacement of RBCs)
  • Hepatic coma (pathophysiology is unclear)
  • Hyperthyroidism (possible response to increased basal metabolic rate and role of G6PD in glucose metabolism)
  • Idiopathic thrombocytopenic purpura
  • Megaloblastic anemia (related to reticulocytosis; replacement of RBCs)
  • Myocardial infarction (medications [e.g., salicylates] may aggravate or stimulate a hemolytic crisis in G6PD-deficient patients)
  • Pernicious anemia (related to reticulocytosis; replacement of RBCs)
  • Viral hepatitis (pathophysiology is unclear)

Decreased in

    Congenital nonspherocytic anemia G6PD deficiency Nonimmunological hemolytic disease of the newborn

Critical findings


Interfering factors

  • Drugs that may increase G6PD levels include fluorouracil.
  • Drugs that may precipitate hemolysis in G6PD deficient individuals include acetanilid, acetylsalicylic acid, ascorbic acid, chloramphenicol (Chloromycetin), dapsone, doxorubicin, furazolidone, isobutyl nitrate, methylene blue, nalidixic acid, naphthalene, niridazole, nitrofurantoin, para-aminosalicylic acid, pentaquine, phenacetin, phenazopyridine, phenylhydrazine, primaquine, quinidine, quinine, sulfacetamide, sulfamethoxazole, sulfanilamide, sulfapyridine, sulfisoxazole, thiazolsulfone, toluidine blue, trinitrotoluene, urate oxidase, and vitamin K.
  • G6PD levels are increased in reticulocytes; the test results may be falsely positive when a patient is in a period of acute hemolysis. G6PD levels can also be affected by the presence of large numbers of platelets and white blood cells, which also contain significant amounts of the enzyme.

Nursing Implications and Procedure


  • Positively identify the patient using at least two unique identifiers before providing care, treatment, or services.
  • Patient Teaching:   Inform the patient this test can assist in diagnosing anemia.
  • Obtain a history of the patient’s complaints, including a list of known allergens, especially allergies or sensitivities to latex.
  • Obtain a history of the patient’s hematopoietic system, symptoms, and results of previously performed laboratory tests and diagnostic and surgical procedures.
  • Obtain a list of the patient’s current medications, including herbs, nutritional supplements, and nutraceuticals (see Effects of Natural Products on Laboratory Values).
  • Review the procedure with the patient. Inform the patient that specimen collection takes approximately 5 to 10 min. Address concerns about pain and explain that there may be some discomfort during the venipuncture.
  • Sensitivity to social and cultural issues,  as well as concern for modesty, is important in providing psychological support before, during, and after the procedure.
  • Note that there are no food, fluid, or medication restrictions unless by medical direction.


  • Potential complications: N/A
  • Avoid the use of equipment containing latex if the patient has a history of allergic reaction to latex.
  • Instruct the patient to cooperate fully and to follow directions. Direct the patient to breathe normally and to avoid unnecessary movement.
  • Observe standard precautions, and follow the general guidelines in Patient Preparation and Specimen Collection. Positively identify the patient, and label the appropriate specimen container with the corresponding patient demographics, initials of the person collecting the specimen, date, and time of collection. Perform a venipuncture.
  • Remove the needle and apply direct pressure with dry gauze to stop bleeding. Observe/assess venipuncture site for bleeding or hematoma formation and secure gauze with adhesive bandage.
  • Promptly transport the specimen to the laboratory for processing and analysis.


  • Inform the patient that a report of the results will be made available to the requesting health-care provider (HCP), who will discuss the results with the patient.
  • Nutritional Considerations: Educate the patient with G6PD deficiency, as appropriate, to avoid certain foods, vitamins, and drugs that may precipitate an acute episode of intravascular hemolysis, including fava beans, ascorbic acid (large doses), acetanilid, antimalarials, furazolidone, isobutyl nitrate, methylene blue, nalidixic acid, naphthalene, niridazole, nitrofurantoin, phenazopyridine, phenylhydrazine, primaquine, sulfacetamide, sulfamethoxazole, sulfanilamide, sulfapyridine, thiazolsulfone, toluidine blue, trinitrotoluene, and urate oxidase.
  • Reinforce information given by the patient’s HCP regarding further testing, treatment, or referral to another HCP. Answer any questions or address any concerns voiced by the patient or family.
  • Depending on the results of this procedure, additional testing may be performed to evaluate or monitor progression of the disease process and determine the need for a change in therapy. Evaluate test results in relation to the patient’s symptoms and other tests performed.

Related Monographs

  • Related tests include biopsy bone marrow, bilirubin, CBC, CBC RBC morphology (including examination of peripheral smear for the presence of Heinz bodies), direct antiglobulin test, folate, Ham’s test, haptoglobin, hemosiderin, newborn screening, osmotic fragility, reticulocyte count, UA, and vitamin B12.
  • Refer to the Hematopoietic System table at the end of the book for related tests by body system.
Handbook of Laboratory and Diagnostic Tests, © 2013 Farlex and Partners
References in periodicals archive ?
With all above examination and extensive workup the diagnosis of acute viral hepatitis E infection with G6PD deficiency was determined.
A study conducted in Asia documented ABO incompatibility and G6PD deficiency as the leading causes of neonatal jaundice [19].
An octogenarian male patient of African descent without current or past evidence of G6PD deficiency developed methemoglobinemia shortly after being treated with venous nitroglycerin.
Nonetheless, caution needs to be exercised with high-dose vitamin C in patients with G6PD deficiency.
Dehydroepiandrosterone (DHEA) is a natural, uncompetitive inhibitor of G6PD. The uncompetitive enzyme kinetics of DHEA's inhibition of G6PD is extremely rare in nature because it can produce a feedforward effect dramatically potentiating the level of enzyme inhibition [3].
The relative contra indications include G6PD deficiency, breast feeding, chronic and recurrent peptic ulcer, and bronchial asthma, severs renal or hepatic damage.
Glucose-6-phosphate dehydrogenase deficiency (G6PD deficiency) also known as "favism" is an X-linked recessive genetic condition that predisposes to hemolysis1 and resultant jaundice in response to triggers, such as hypoxia, certain foods, illness and medication2.
In particular, they generated transgenic mice with an increased expression throughout their bodies of one of the most important enzymes for the production of NADPH, namely, glucose-6-phosphate dehydrogenase (or G6PD).
[5] The aim of this study was to find out the prevalence of frequency of sickle cell disease, G6PD deficiency, and [alpha] and [beta] thalassemia in healthy tribal medical students and to increase their own awareness about the disease they are experiencing and increase sensitization toward social awareness.
showed that the relative reactive oxygen species (ROS) level and DNA oxidative damage were significantly increased in the cell line with inhibited glucose 6-phosphate dehydrogenase (G6PD) upon treatment with 1,4-benzoquinone (BQ).
In the present study, G6PD deficiency and Cephalhematoma were documented as the cause ofjaundice in 5.55% newborns each.
According to Sachdev, the treatment procedure had to be changed as tests revealed that the patient suffered from G6PD deficiency.