beta-alanine

(redirected from Beta-alanine metabolism)

β-al·a·nine

(al'ă-nēn),
3-Aminopropionic acid or β-aminopropionic acid; a decarboxylation production of aspartic acid. Found in the brain, in carnosine, and in coenzyme A.
Farlex Partner Medical Dictionary © Farlex 2012
References in periodicals archive ?
The Venn diagram to illustrate the overlap of the significantly enriched KEGG pathways was shown in Figure 8(a); there were 4 KEGG pathways commonly significantly enriched in the upregulated DE genes between the comparisons of A versus M and C versus M, which were of histidine metabolism, beta-alanine metabolism, and glycine, serine, and threonine metabolism.
In KEGG pathway enrichment analysis, there were 4 KEGG pathways commonly significantly enriched in the upregulated DE genes between the comparisons of A versus M and C versus M, which were of histidine metabolism, beta-alanine metabolism, and glycine, serine and threonine metabolism, and 10 KEGG pathways commonly significantly enriched in the downregulated DE genes between C versus M and A versus M comparisons and which were mainly involved in Toll-like receptor signaling pathway, chemokine signaling pathway, TNF signaling pathway, NF-kappa B signaling pathway, and cytosolic DNA-sensing pathway.
The top 7 metabolic pathways included beta-alanine metabolism (Figure 6(a)), glycerolipid metabolism (Figure 6(b)), alanine, aspartate, and glutamate metabolism (Figure 6(c)), glycine, serine, and threonine metabolism (Figure 6(d)), pyruvate metabolism (Figure 6(e)), citrate cycle (TCA cycle) (Figure 6(f)), and inositol phosphate metabolism (Figure 6(g)).
According to the MetPA analysis (Figure 7), the beta-alanine metabolism, alanine, aspartate, and glutamate metabolism, glycine, serine, and threonine metabolism, pyruvate metabolism, and citrate cycle were potential targets for the design of the QSHY drug.
The levels of alanine, aspartate, pyruvate, malic acid, and fumaric acid were upregulated by QSHY intervention, which suggested that QSHY intervened beta-alanine metabolism, alanine, aspartate, and glutamate metabolism, pyruvate metabolism, and citrate cycle that might be correlated to the therapeutic mechanism of QSHY (Figure 7).
Combined with the result of the assay evaluating the physiological parameters and the histology, the changes in the serum and liver metabolites suggested that the disorders of beta-alanine metabolism, alanine, aspartate, and glutamate metabolism, glycine, serine, and threonine metabolism, pyruvate metabolism, and citrate cycle are related to fatty liver induced by high-fat diet and the potential effect of QSHY on some of the above metabolic pathways.