severe acute respiratory syndrome (SARS)

Also found in: Dictionary, Thesaurus, Encyclopedia.

Severe Acute Respiratory Syndrome (SARS)



Severe acute respiratory syndrome (SARS) is the first emergent and highly transmissible viral disease to appear during the twenty-first century.


Patients with SARS develop flu-like fever, headache, malaise, dry cough and other breathing difficulties. Many patients develop pneumonia, and in 5-10% of cases, the pneumonia and other complications are severe enough to cause death. SARS is caused by a virus that is transmitted usually from person to person—predominantly by the aerosolized droplets of virus infected material.
The first known case of SARS was traced to a November 2002 case in Guangdong province, China. By mid-February 2003, Chinese health officials tracked more than 300 cases, including five deaths in Guangdong province from what was at the time described as an acute respiratory syndrome. Many flu-causing viruses have previously originated from Guangdong province because of cultural and exotic cuisine practices that bring animals, animal parts, and humans into close proximity. In such an environment, pathogens can more easily genetically mutate and make the leap from animal hosts to humans. The first cases of SARS showed high rates among Guangdong food handlers and chefs.
Chinese health officials initially remained silent about the outbreak, and no special precautions were taken to limit travel or prevent the spread of the disease. The world health community, therefore, had no chance to institute testing, isolation, and quarantine measures that might have prevented the subsequent global spread of the disease.
On February 21, Liu Jianlun, a 64-year-old Chinese physician from Zhongshan hospital (later determined to have been "super-spreader," a person capable of infecting unusually high numbers of contacts) traveled to Hong Kong to attend a family wedding despite the fact that he had a fever. Epidemiologists subsequently determined that, Jianlun passed on the SARS virus to other guests at the Metropole Hotel where he stayed—including an American businessman en route to Hanoi, three women from Singapore, two Canadians, and a Hong Kong resident. Jianlun's travel to Hong Kong and the subsequent travel of those he infected allowed SARS to spread from China to the infected travelers' destinations.
Johnny Chen, the American businessman, grew ill in Hanoi, Vietnam, and was admitted to a local hospital. Chen infected 20 health care workers at the hospital including noted Italian epidemiologist Carlo Urbani who worked at the Hanoi World Health Organization (WHO) office. Urbani provided medical care for Chen and first formally identified SARS as a unique disease on February 28, 2003. By early March, 22 hospital workers in Hanoi were ill with SARS.
Unaware of the problems in China, Urbani's report drew increased attention among epidemiologists when coupled with news reports in mid-March that Hong Kong health officials had also discovered an outbreak of an acute respiratory syndrome among health care workers. Unsuspecting hospital workers admitted the Hong Kong man infected by Jianlun to a general ward at the Prince of Wales Hospital because it was assumed he had a typical severe pneumonia—a fairly routine admission. The first notice that clinicians were dealing with an unusual illness came—not from health notices from China of increasing illnesses and deaths due to SARS—but from the observation that hospital staff, along with those subsequently determined to have been in close proximity to the infected persons, began to show signs of illness. Eventually, 138 people, including 34 nurses, 20 doctors, 16 medical students, and 15 other health care workers, contracted pneumonia.
One of the most intriguing aspects of the early Hong Kong cases was a cluster of more than 250 SARS cases that occurred in a cluster of high-rise apartment buildings—many housing health care workers—that provided evidence of a high rate of secondary transmission. Epidemiologists conducted extensive investigations to rule out the hypothesis that the illnesses were related to some form of local contamination (e.g., sewage, bacteria on the ventilation system, etc.). Rumors began that the illness was due to cockroaches or rodents, but no scientific evidence supported the hypothesis that the disease pathogen was carried by insects or animals.
Hong Kong authorities then decided that those suffering the flu-like symptoms would be given the option of self-isolation, with family members allowed to remain confined at home or in special camps. Compliance checks were conducted by police.
One of the Canadians infected in Hong Kong, Kwan Sui-Chu, return to Toronto, Ontario, and died in a Toronto hospital on March 5. As in Hong Kong, because there were no alert from China about the SARS outbreak, Canadian officials did not initially suspect that Sui-Chu had been infected with a highly contagious virus, until Sui-Chu's son and five health care workers showed similar symptoms. By mid-April, Canada reported more than 130 SARS cases and 15 fatalities.
Increasingly faced with reports that provided evidence of global dissemination, on March 15, 2003, the World Health Organization (WHO) took the unusual step of issuing a travel warning that described SARS is a "worldwide health threat." WHO officials announced that SARS cases, and potential cases, had been tracked from China to Singapore, Thailand, Vietnam, Indonesia, Philippines, and Canada. Although the exact cause of the "acute respiratory syndrome" had not, at that time, been determined, WHO officials issuance of the precautionary warning to travelers bound for Southeast Asia about the potential SARS risk served as notice to public health officials about the potential dangers of SARS.
Within days of the first WHO warning, SARS cases were reported in United Kingdom, Spain, Slovenia, Germany, and in the United States.
WHO officials were initially encouraged that isolation procedures and alerts were working to stem the spread of SARS, as some countries reporting small numbers of cases experienced no further dissemination to hospital staff or others in contact with SARS victims. However, in some countries, including Canada, where SARS cases occurred before WHO alerts, SARS continued to spread beyond the bounds of isolated patients.
WHO officials responded by recommending increased screening and quarantine measures that included mandatory screening of persons returning from visits to the most severely affected areas in China, Southeast Asia, and Hong Kong.
In early April 2003, WHO took the controversial additional step of recommending against non-essential travel to Hong Kong and the Guangdong province of China. The recommendation, sought by infectious disease specialists, was not controversial within the medical community, but caused immediate concern regarding the potentially widespread economic impacts.
Mounting reports of SARS showed a increasing global dissemination of the virus. By April 9, the first confirmed reports of SARS cases in Africa reached WHO headquarters, and eight days later, a confirmed case was discovered in India.

Causes and symptoms

In mid-April 2003, Canadian scientists at the British Columbia Cancer Agency in Vancouver announced that they that sequenced the genome of the coronavirus most likely to be the cause of SARS. Within days, scientists at the Centers for Disease Control (CDC) in Atlanta, Georgia, offered a genomic map that confirmed more than 99% of the Canadian findings.
Both genetic maps were generated from studies of viruses isolated from SARS cases. The particular coronavirus mapped had a genomic sequence of 29,727 nucleotides—average for the family of coronavirus that typically contain between 29,000-31,000 nucleotides.
Proof that the coronavirus mapped was the specific virus responsible for SARS would eventually come from animal testing. Rhesus monkeys were exposed to the virus via injection and inhalation and then monitored to determine whether SARS like symptoms developed, and then if sick animals exhibited a histological pathology (i.e., an examination of the tissue and cellular level pathology) similar to findings in human patients. Other tests, including polymerase chain reaction (PCR) testing helped positively match the specific coronavirus present in the lung tissue, blood, and feces of infected animals to the exposure virus.
Identification of a specific pathogen can be a complex process, and positive identification requires thousands of tests. All testing is conducted with regard to testing Koch's postulates—the four conditions that must be met for an organism to be determined to the cause of a disease. First, the organism must be present in every case of the disease. Second, the organism must be able to be isolated from the host and grown in laboratory conditions. Third, the disease must be reproduced when the isolated organism is introduced into another, healthy host. The fourth postulate stipulates that the same organism must be able to be recovered and purified from the host that was experimentally infected.
Early data indicates that SARS has an incubation period range of two to 10 days, with an average incubation of about four days. Much of the inoculation period allows the virus to be both transported and spread by an asymptomatic carrier. With air travel, asymptotic carriers can travel to anywhere in the world. The initial symptoms are non-specific and common to the flu. Infected cases then typically spike a high fever 100.48F (388C) as they develop a cough, shortness of breath, and difficulty breathing. SARS often fulminates (reaches it maximum progression) in a severe pneumonia that can cause respiratory failure and death in about 10% of its victims.


Currently, initial tests include blood cultures, Gram stain, chest radiograph, and tests for other viral respiratory pathogens such as influenza A and B. Other serologic techniques are used, and if SARS is suspected, samples are forwarded to state/local public health departments and/or the CDC for coronavirus antibody testing.


As of May 1, 2003, no therapy was demonstrated to have clinical effectiveness against the virus that causes SARS, and physicians could offer only supportive therapy (e.g. administration of fluids, oxygen, ventilation, etc.).


By late April/early May 2003, WHO officials had confirmed reports of more than 3,000 cases of SARS from 18 different countries with 111 deaths attributed to the disease (about a 5-10% death rate). United States health officials reported 193 cases with no deaths. Significantly, all but 20 of the U.S. cases were linked to travel to infected areas, and the other 20 cases were accounted for by secondary transmission from infected patients to family members and health care workers.
Information on countries reporting SARS and the cumulative total of cases and deaths is updated each day on the WHO SARS web site at 〈http;//〉.


Until a vaccine is developed, isolation and quarantine remain potent tools in the modern public health arsenal. Both procedures seek to control exposure to infected individuals or materials. Isolation procedures are used with patients with a confirmed illness. Quarantine rules and procedures apply to individuals who are not currently ill, but are known to have been exposed to the illness (e.g., been in the company of a infected person or come in contact with infected materials).
Isolation and quarantine both act to restrict movement and to slow or stop the spread of disease within a community. Depending on the illness, patients placed in isolation may be cared for in hospitals, specialized health care facilities, or in less severe cases, at home. Isolation is a standard procedure for TB patients. In most cases, isolation is voluntary; however, isolation can be compelled by federal, state, and some local law.
States governments within the United States have a general authority to set and enforce quarantine conditions. At the federal level, the Centers for Disease Control and Prevention's (CDC) Division of Global Migration and Quarantine is empowered to detain, examine, or conditionally release (release with restrictions on movement or with a required treatment protocol) individuals suspected of carrying certain listed communicable diseases.
As of April 27, 2003, the CDC in Atlanta recommended SARS patients be voluntarily isolated, but had not recommended enforced isolation or quarantine. Regardless, CDC and other public heath officials, including the Surgeon General, sought and secured increased powers to deal with SARS. On April 4, 2003, U.S. President George W. Bush signed Presidential Executive Order 13295 that added SARS to a list of quarantinable communicable diseases. The order provided health officials with the broader powers to seek "… apprehension, detention, or conditional release of individuals to prevent the introduction, transmission, or spread of suspected communicable diseases …"
Travel advisories issued by WHO should be reviewed and people who must travel to areas with SARS outbreaks should follow such preventative measures as frequent hand washing and avoidance of large crowds. Likewise, family members caring for suspected and/or confirmed SARS patients should wash hands frequently, avoid direct contact with the patient's bodily fluids, and monitor their own possible development of symptoms closely.

severe acute respiratory syndrome (SARS)

a low incidence, highly transmissible and fatal, acute respiratory disease, principally of humans, that emerged in Southern China in 2002. Caused by a coronavirus, the reservoir host is uncertain but possibly civets.
Full browser ?