2. the spontaneous mixing of the molecules or ions of two or more substances resulting from random thermal motion; its rate is proportional to the concentrations of the substances and it increases with the temperature.
In the body fluids the molecules of water, gases, and the ions of substances in solution are in constant motion. As each molecule moves about, it bounces off other molecules and loses some of its energy to each molecule it hits, but at the same time it gains energy from the molecules that collide with it.
The rate of diffusion is influenced by the size of the molecules; larger molecules move less rapidly, because they require more energy to move about. Molecules of a solution of higher concentration move more rapidly toward those of a solution of lesser concentration; in other words,
the rate of movement from higher to lower concentration is greater than the movement in the opposite direction.Other factors influencing the rate of diffusion from one substance to another are the size of the chamber in which the diffusion is taking place and the temperature within the chamber.
The rate of diffusion increases as the size of the chamber increases. Molecular motion never ceases except at absolute zero; as the temperature increases so does the rate of motion of molecules. Thus,
the higher the temperature, the greater the molecular activity and, consequently, the greater the rate of diffusion.Many of the substances passing through the cell membrane are transported actively or passively by the process of diffusion. For certain hormones and other substances, there are
transport proteins in the plasma membrane that bind to substances and transport them across the membrane; this type of transport is called
facilitated diffusion. Without this constant motion of molecules there would be no exchange of nutrients and end products of cellular metabolism between the intracellular and extracellular fluid and the cell could not survive. The diffusion of water across cell membranes is called
osmosis.
The diffusion of gases through the respiratory membrane is essential to normal respiration. The rapidity and ease with which oxygen and carbon dioxide are diffused through the membrane are affected by the thickness of the membrane and its surface area, the diffusion coefficient of the gas in the water within the membrane, and the difference between the partial pressures of the gases in the alveoli and the blood.
The respiratory membrane is normally less than 1 micron in thickness, yet it is composed of three layers within the alveolus (surfactant and fluid layers and alveolar epithelium), an interstitial space between the alveolar epithelium and capillary membrane, and two layers in the capillary membrane. The thickness of the respiratory membrane can be affected by the presence of edematous fluid and by fibrotic changes in the membrane resulting from certain pulmonary diseases. An increase of fluid within the respiratory membrane and alveoli reduces the rate of diffusion because the gases must pass through the additional fluid as well as the other layers of the membrane. Thickening of the epithelial layers of the membrane, as in fibrosis, imposes additional restriction on the passage of gases.
The difference in the partial pressure of a gas in the alveoli and that same gas in the blood is a measure of the net tendency of that gas to pass through the respiratory membrane. The term partial pressure refers to the amount of pressure being exerted by a particular gas in a mixture of gases, the word
partial referring to the part that is a particular gas in relation to the whole mixture. The partial pressure of oxygen, for example, reflects the number of oxygen molecules striking the surface of the membrane at any given point. The difference in the partial pressure refers to the difference in the amount of pressure being exerted by the oxygen molecules on the alveolar side of the membrane and the amount of pressure being exerted by the oxygen striking the same point from the opposite side. When the partial pressure of oxygen in the alveoli is greater than that of the oxygen in the blood, the oxygen molecules move across the membrane in the direction of the blood. The same is true in regard to carbon dioxide, which moves in the opposite direction when its partial pressure in the blood is greater than that in the alveoli. Partial pressures of oxygen and carbon dioxide are discussed in more detail under
blood gas analysis. See illustration.

Simple diffusion. From Applegate, 2000.