Cochlear Implants

Also found in: Dictionary, Encyclopedia.

Cochlear Implants



A cochlear implant is a surgical treatment for hearing loss that works like an artificial human cochlea in the inner ear, helping to send sound from the ear to the brain. It is different from a hearing aid, which simply amplifies sound.


A cochlear implant bypasses damaged hair cells and helps establish some degree of hearing by stimulating the hearing (auditory) nerve directly.


Because the implants are controversial, very expensive, and have uncertain results, the U.S. Food and Drug Administration (FDA) has limited the implants to people:
  • who get no significant benefit from hearing aids
  • who are at least two years old (the age at which specialists can verify severity of deafness)
  • with severe to profound hearing loss


Hearing loss is caused by a number of different problems that occur either in the hearing nerve or parts of the middle or inner ear. The most common type of deafness is caused by damaged hair cells in the cochlea, the hearing part of the inner ear. Normally, hair cells stimulate the hearing nerve, which transmits sound signals to the brain. When hair cells stop functioning, the hearing nerve remains unstimulated, and the person cannot hear. Hair cells can be destroyed by many things, including infection, trauma, loud noise, aging, or birth defects.
All cochlear implants consist of a microphone worn behind the ear that picks up sound and sends it along a wire to a speech processor, which is worn in a small shoulder pouch, pocket, or belt. The processor boosts the sound, filters out background noise, and turns sound into digital signals before sending it to a transmitter worn behind the ear. A magnet holds the transmitter in place through its attraction to the receiver-stimulator, a part of the device that is surgically attached beneath the skin in the skull. The receiver picks up digital signs forwarded by the transmitter, and converts them into electrical impulses. These electrical impulses flow through electrodes contained in a narrow, flexible tube that has been threaded into the cochlea.
As many as 24 electrodes (depending on the type of implant) carry the impulses that stimulate the hearing nerve. The brain then interprets the signals as specific sounds.
Despite the benefits that the implant appears to offer, some hearing specialists and members of the deaf community still believe that the benefits may not outweigh the risks and limitations of the device. Because the device must be surgically implanted, it carries some surgical risk. Also, manufacturers cannot promise how well a person will hear with an implant. Moreover, after getting an implant, some people say they feel alienated from the deaf community, while at the same time not feeling fully a part of the hearing world.
The sounds heard through an implant are different from the normal hearing sounds, and have been described as artificial or "robotlike." This is because the implant's handful of electrodes cannot hope to match the complexity of a person's 15,000 hair cells.

Surgical procedure

During the procedure, the surgeon makes an incision behind the ear and opens the mastoid bone (the ridge on the skull behind the ear) leading into the middle ear. The surgeon then places the receiver-stimulator in the bone, and gently threads the electrodes into the cochlea. This operation takes between one and one-half to five hours.


Before a person gets an implant, specialists at an implant clinic conduct a careful evaluation, including extensive hearing tests to determine how well the candidate can hear.
Unfortunately, it is not possible to predict who will benefit from an implant. In general, the later in life a person becomes deaf, and the shorter the duration of deafness, the better the person is likely to understand speech with an implant. Likewise, someone with a healthy hearing nerve will do better than someone with a damaged nerve.
First, candidates undergo a trial with a powerful hearing aid. If the aid cannot improve hearing enough, a physician then performs a physical exam and orders a scan of the inner ear (some patients with a scarred cochlea are not good candidates). A doctor may also order a psychological exam to better understand the person's expectations. Patients need to be highly motivated, and have a realistic understanding of what an implant can and cannot do.


The patient remains in the hospital for a day or two after the surgery. After a month, the surgical wounds will have healed and the patient returns to the implant clinic to be fitted with the external parts of the device (the speech processor, microphone, and transmitter). A clinicican tunes the speech processor and sets levels of stimulation for each electrode, from soft to loud.
The patient is then trained in how to interpret the sounds heard through the device. The length of the training varies from days to years, depending on how well the person can interpret the sounds heard through the device.


As with all operations, there are a few risks of surgery. These include:
  • dizziness
  • facial paralysis (rarely)
  • infection at the incision site
Scientists are not sure about the long-term effects of electrical stimulation on the nervous system. It is also possible to damage the implant's internal components by a blow to the head, which will render the device unworkable.

Normal results

Most profoundly, deaf patients who receive an implant are able to discern medium and loud sounds, including speech, at comfortable listening levels. Many use sound clues from the implant, together with speech reading and other facial cues. Almost all adults improve their communication skills when combining the implant with speech reading (lip reading), and some can understand spoken words without speech reading. More than half of adults who lost hearing after they learned to speak can understand some speech without speech reading. About 30% can understand spoken sounds well enough to use the phone.
Children who were born deaf or who lost their hearing before they could speak have the most difficulty in learning to use the implant. Research suggests, however, that most of these children are able to learn spoken language and understand speech using the implant.

Key terms

Cochlea — The hearing part of the inner ear. This snail-shaped structure contains fluid and thousands of microscopic hair cells tuned to various frequencies.
Hair cells — Sensory receptors in the inner ear that transform sound vibrations into messages that travel to the brain.
Inner ear — The interior section of the ear, where sound vibrations and information about balance are translated into nerve impulses.
Middle ear — The small cavity between the eardrum and the oval window that houses the three tiny bones of hearing.



Alexander Graham Bell Association for the Deaf. 3417 Volta Place NW, Washington, DC 20007. (202) 337-5220.
American Speech-Language-Hearing Association. 10801 Rockville Pike, Rockville, MD 20852. (800) 638-8255.
Cochlear Implant Club International. 5335 Wisconsin Ave. NW, Suite 440, Washington, DC 20015-2052. (202) 895-2781.
Hearing Loss Link. 2600 W. Peterson Ave., Ste. 202, Chicago, IL 60659. (312) 743-1032, (312) 743-1007 (TDD).
National Association for the Deaf. 814 Thayer Ave., Silver Spring, MD 20910. (301) 587-1788, (301) 587-1789 (TDD).
References in periodicals archive ?
the cochlear implants, which are the subject of the public procurement, are intended for the treatment of children with congenital or acquired deafness.
El Shazly called for increasing technical support for centres specialised in cochlear implants and rehabilitation.
The costs of cochlear implants vary widely depending on a number of factors, including the duration and extent of a patient's hearing loss prior to surgery.
Implantable hearing solutions company Cochlear Limited (ASX:COH) reported on Monday the receipt of approval from the US Food and Drug Administration for the first telehealth remote feature that allows follow-up programming sessions for the nucleus cochlear implant system.
Since speech recognition with cochlear implants is significantly decreased by the presence of background noise, a way to improve cochlear implant performance in noisy listening conditions is to use noise reduction techniques that suppress background noise.
Preoperative imaging of the temporal bone can demonstrate anatomic details relevant to surgical management, which may be essential in the presurgical evaluation of patients receiving cochlear implants.
9-11) Accordingly, we strove to compare the level of auditory perception in children with cochlear implants with and without additional disabilities.
For people already functional in spoken language who lose their hearing, cochlear implants can be of great help in restoring functional comprehension of speech, especially if they have only lost their meaning for short time.
sup][2] analyzed the causes for revision procedures, surgical findings in 45 reoperated cochlear implant patients.
This feature length documentary chronicles the lives of deaf parents, Jill and Michael Stark, as they make the sometimes controversial and difficult decision to provide their two young children with cochlear implants.
Amman, June 24 (Petra) -- HRH the Crown Prince Hussein bin Abdullah II, the Regent, on Wednesday, visited cochlear surgery department at King Hussein Medical Center and checked on patients who had received cochlear implants as part of Prince Hussein's initiative, "Hearing Without Borders.
Since the year 2000, approximately 324,000 patients have benefited from cochlear implants.