programmed cell death

(redirected from Cellular aging)
Also found in: Dictionary, Thesaurus.


the cessation of all physical and chemical processes that invariably occurs in all living organisms. (See also dying.) There is at present no standardized diagnosis of clinical death or precise definition of human death. The most widely known and commonly accepted means of determining death evolved from several medical conferences held in the late 1960s for the purpose of defining irreversible coma or nonfunctioning brain as a new criterion for death. The indications of deep irreversible coma (or brain death) are (1) absolute unresponsiveness to externally applied stimuli; (2) cessation of movement and breathing, including no spontaneous breathing for three minutes after an artificial respirator has been turned off; and (3) complete absence of cephalic reflexes. The pupils of the eyes must be dilated and unresponsive to direct light.

Use of the electroencephalogram is also recommended as being of value in confirmation of irreversible coma or death. If there is a flat electroencephalographic reading at the time of apparent death and a second flat reading 24 hours later, then the patient may be declared dead.

There are two exceptions to the above criteria. These are in regard to patients exhibiting marked hypothermia (body temperature below 32.2°C), and those suffering from severe central nervous system depression as a result of drug overdose.

It is recognized that the above criteria are limited in that the notion of irreversibility is not readily agreed upon and may take on new meaning as medical technology advances. The criteria are especially helpful as complements to the traditional criteria of absence of heart beat and lack of spontaneous respiration as indications of death.

In 1981, a Presidential Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research strongly recommended that all of the United States recognize the cessation of brain function as a definition of death, even in cases in which life-support systems could maintain respiratory and circulatory functions by artificial means.
activation-induced cell death (AICD) recognition and deletion of T lymphocytes that have been activated and so induced to proliferate. T lymphocytes are activated when a foreign agent is perceived, and AICD thereby prevents them from overgrowth. It is particularly important for regulation of lymphocytes that recognize self antigens.
black death bubonic plague; see plague.
brain death (cerebral death) see brain death.
clinical death the absence of heart beat (no pulse can be felt) and cessation of breathing.
cot death (crib death) sudden infant death syndrome (SIDS).
programmed cell death the theory that particular cells are programmed to die at specific sites and at specific stages of development.


(ap'op-tō'sis, ap'ō-tō'sis), In the diphthong pt, the p is properly silent only at the begining of a word. Many speakers in the U.S. nonetheless silence it in this word.
Programmed cell death; deletion of individual cells by fragmentation into membrane-bound particles, which are phagocytized by other cells.
[G. a falling or dropping off, fr. apo, off, + ptosis, a falling]

Whereas some cells (for example, cardiac and skeletal muscle fibers, CNS neurons) last a lifetime, others (for example, epithelial and glandular cells, erythrocytes) have limited life-spans, at the end of which they are genetically programmed for self-destruction by apoptosis, usually to be replaced by others formed by mitosis from surviving cells. Apoptosis also plays an essential role in morphogenesis and tissue homeostasis by eliminating transitory organs and tissues (for example, pronephros and mesonephros) and cells formed in excess of bodily needs during embryogenesis, as well as cells that have been damaged or virally infected. Cells in tissue cultures spontaneously undergo apoptosis after about 50 cell divisions. In contrast to cell death caused by injury, infection, or circulatory impairment, apoptosis elicits no inflammatory response in adjacent cells and tissues. Features of apoptosis detectable by histologic and histochemical methods include cell shrinkage, due chiefly to dehydration; increased membrane permeability, with a rise in intracellular calcium and a fall in pH; nuclear and cytoplasmic condensation; endolytic cleavage of nuclear DNA into oligonucleosomal fragments; and ultimately formation of apoptotic bodies, which are absorbed and removed by macrophages. Besides being due to genetic programming, apoptosis can be induced by injury to cellular DNA, as by irradiation and some cytotoxic agents used to treat cancer. It can be suppressed by naturally occurring factors (for example, cytokines) and by some drugs (for example, protease inhibitors). Apoptosis typically does not occur in malignant cells. Such cells therefore escape the destiny of their nonmalignant precursor cells and are said to be immortal. Immortalization can occur in various ways. The BCL2 gene, present in many cancers, directs the production of an enzyme that blocks apoptosis and immortalizes affected cells. Injury to DNA normally triggers apoptosis by activating the p53 tumor suppressor gene, which is missing or mutated in about one half of all human cancers. Cells that lack this gene can survive chemotherapy and irradiation intended to destroy cancer cells. Failure of apoptosis to occur is also involved in some degenerative diseases, including lupus erythematosus, and may be responsible for cellular damage caused by certain viruses, including HIV. Apoptosis has thus far been observed only in animal cells.

programmed cell death



An intrinsic, highly complex programme of auto-orchestrated cell death, which is as complex and important as proliferation. Apoptosis is morphologically characterised by chromatin condensation and DNA degradation, and is a mechanism used by the immune system for antigen-induced clonal deletion of cortical thymocytes (i.e., immune tolerance). It is the most common form of eukaryotic cell death in embryogenesis, metamorphosis, tissue atrophy and tumour regression; it is induced by cytotoxic T cells, NK and killer cells, lymphotoxins, Ca2+, glucocorticoids, withdrawal of interleukins, heat shock, viral infection, oxidants, free radicals, by some monoclonal antibodies (e.g., APO-1), chemotherapeutic agents (e.g., bleomycin, cisplatin, cytosine arabinoside, methotrexate, vincristine and others), gamma radiation and UV light. Cells that die by apoptosis do not usually elicit the inflammatory responses seen in necrosis.

Apoptosis is inhibited by physiologic factors (growth factors), extracellular matrix, CD40 ligand, neutral amino acids, zinc, sex hormones, viral genes (e.g., adenovirus E1B, baculovirus p35, EBV LMP-1 and others) and pharmacologic agents (e.g., inhibitors of calpain and cysteine protease and tumour promoters, such as PMA and phenobarbital).

Apoptosis and disease
Defects in apoptosis have been pathogenically linked to AIDS, Alzheimer’s disease and other neurodegenerative phenomena, autoimmune disease, cancer, ischaemic injury, liver toxicity (.g., by alcohol), myelodysplastic syndrome, viral infections and other conditions.


Programmed cell death; deletion of individual cells by fragmentation into membrane-bound particles, which are phagocytized by other cells.
Synonym(s): programmed cell death.
[G. a falling or dropping off, fr. apo, off, + ptosis, a falling]

programmed cell death



Programmed cell death; deletion of individual cells by fragmentation into membrane-bound particles, which are phagocytized by other cells.
Synonym(s): programmed cell death.
[G. a falling or dropping off, fr. apo, off, + ptosis, a falling]

programmed cell death

proposed system of cell death, often including poly(ADP)-ribosylation, ensures that a cell will not survive if it is so badly damaged that its recovery would harm the organism. See also apoptosis.
References in periodicals archive ?
These findings indicate that childhood stress and some psychiatric disorders are linked to important cellular changes that may represent advanced cellular aging.
Improving nerve regeneration after corneal surgery, preventing psychotic disorders in those at high risk and reducing cellular aging are three emerging benefits of omega 3 fatty acids, according to new research.
16 Science, solidify a hypothesis of cellular aging according to which telomerase's absence leads to a gradual destruction of chromosomes that ultimately stops cell division.
Renewnt's[TM] proprietary ingredient, Asymmtate[TM], is a new approach to cellular aging, optimizing signals in the Wnt (pronounced "wint") pathway to energize the skin's stem cells, encouraging youthful cell behavior.
Our flagship product, also known as VITAL SURGE, is a nutricosmetic designed to slow aging, create a youthful appearance and enhance whole body wellness by attacking the root causes of cellular aging.
Regular consumption of sugar-sweetened sodas might influence disease development, not only by straining the body's metabolic control of sugars, but also through accelerated cellular aging of tissues," said Elissa Epel, PhD, professor of psychiatry at UCSF and senior author of the study.
This improved action of the proteasome causes damaged proteins to be degraded more efficiently, thereby preventing the buildup of proteins that promote cellular aging.
But this enzyme production slows with aging, telomeres shorten, genetic material is damaged and cellular aging occurs.
Previous studies by Nelson and others have documented deficits in cognitive function, language and social functioning; an increase in stereotypies; markedly elevated rates of attention-deficit/hyperactivity disorder; difficulties with social functioning; and even premature cellular aging.
This metabolic sequence--the decline in CoQ10 levels in the body--has been associated with the cellular aging process and age-related oxidative insult resulting in acute and chronic conditions, such as cardiovascular disease, neurodegenerative disease, diabetes, chronic fatigue, metabolic syndrome, cancer and many others.
Although the ultimate trigger of red-cell aging and removal remains obscure, scientists express optimism that they will someday characterize these reactions in sufficient detail to manipulate the cellular aging process in useful ways.
Makucell Co-founder, Board Chairman and distinguished research scientist at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research of the Keck School of Medicine at the University of Southern California, added, "Renewnt's proprietary ingredient, Asymmtate[TM], is a novel approach to cellular aging, working with the body's own skin stem cells by optimizing the signals in the Wnt (pronounced "wint") pathway to encourage production of the components that create the skin's supportive matrix.

Full browser ?